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Growing Complexity Requires Rethinking of

Design Strategy

Today’s Challenges

* In North America, about 20% of
the designs exceed 100M gates

 Higher clock speed trend
» Multiple voltage domains
« Complex SDC constraints
« Large number of IPs

e Schedules of 15 months or less
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Growing Design Complexity Requires
Fast and Early Exploration

 During early design stages
—RTL and constraints are incomplete

—Many blocks and 3"-party IPs are Early RTL Exploration

incomplete or unavailable
Refinement

— Floorplan is unavailable or

prellmlnary Colr?;rtl;a%nts Synthesis Refinement Synthesis Synthesis
Development
* Need an efficient way to: Rgfingment .
_ _ _ m— saved time
— Resolve data inconsistencies Const.

develop.

— Debug timing constraints

RTL Exploration

— Improve design data Time

 Fast synthesis requires high-quality
netlists and reduces design
schedules
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Fast Synthesis in DC Explorer
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DC Explorer in Design Cycle
Better Starting Point For RTL Synthesis

 Tolerance for incomplete data
— Faster RTL and constraints development

RTL Exploration

— Pre-Synthesis floorplanning DC Explorer

« 5-10X faster runtime compared to final RTL gigh Quslity
synthesis esign Data

— Quick what-if analyses

Design
Compiler

» Physical implementation p

— Reading floorplans Compiler | & 1

— Congestion-driven placement e

— Physically aware optimizations Validator

» 8% timing and area correlations
— Early visibility into synthesis results
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DC Explorer

Early Design Exploration

» Up to one month faster schedule
 Early visibility

— Tolerance for incomplete data

— Low-power support

— Floorplan exploration
* Debug and RTL cross-probing

— Timing analysis

— Logic-level analysis

— Congestion analysis
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Design Time Savings with
DC Explorer
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5-10X Faster Runtime Compared to Final

RTL Synthesis

* New fast optimization technology

— Unaffected by the quality of
constraints

— Multicore support delivers additional
2X faster runtime on 4 cores

» Enabling rapid what-if explorations
of design configurations
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8% Correlation with Design Compiler

 Assess the likelihood of meeting
design targets

« Support power and test

— Clock gating, %LVT leakage
optimizations, scan insertion, and test
DRC checks

* ldentify potential improvements
before implementation

— Datapath architecture
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How to Design a Fast Synthesis Flow

* Principles for achieving faster runtime

— Re-think old and devise new faster
algorithms

— Create a convergent flow

— Approximate only when QoR impact is
minimal

— Reduce effort for iterative algorithms

— Exploit design characteristics

» Have state-of-the-art Design Compiler
Graphical reference flow

— Important to achieve tight correlation
with final synthesis

—No missing functionalities
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No Compromise on Features

Fast synthesis in DC Explorer supports all major optimizations and engines

Combinational Optimizations for timing and area

— Boundary optimization

— Constant propagation

— Datapath extraction and optimization
Sequential optimizations

— Sequential output inversion

— Unloaded and constant register removal

— Register merging

— Retiming
Clock gating
Combinational and sequential gate sizing
High-fanout buffering
Congestion-driven placement
Multicorner multimode
Multibit register mapping
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Synthesis Flow with Fast Gate Sizing
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Gate Sizing

« Gate sizing optimization assigns gate sizes to all cells in the design
using the technology library model for each gate to meet timing
constraints with minimal area and power

* Prior work in gate sizing:

— Continuous methods
— Convex nonlinear optimization (numerical formulation, Lagrangian relaxation)
— Linear programming and network flow
— Slew budgeting

— Discrete methods
— Sensitivity-based iterative methods
— Dynamic programming
— Branch and bound

» Gate sizing algorithm in DC Explorer is based on numerical synthesis
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Patented Technology for Gate Sizing
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Techniques and systems are described for improving the effi-
ciency of timing calculations in numerical sequential cell
sizing and for improving the efficiency of incremental slack
margin propagation. Some embodiments cache timing-re-
lated information associated with a source driver that drives
an input of a sequential cell that is being sized, and/or timing-
related information for each output of the sequential cell that
is being sized. The cached timing-related information for the
source driver can be rensed when sizing a different sequential
cell. The cached timing-related information for the outputs of
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when it is necessary to do so for correctness or accuracy
reasons) while sizing gates in the circuit design in a reverse-
levelized processing order.

15 Claims, 3 Drawing Sheets

Reuse the timing-related information
while optimizing another sequential cell
that has at least one input that is driven
by the same source driver

206

While optimizing a sequential cell,
compute timing-related information
associated with a source driver that
drives an input of the sequential cell
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¥
Store the timing-related information
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Numerical Synthesis

Linear Runtime

N
o

=
al

 Constraint-invariant synthesis

—Linear runtime in the size of the Eﬂfﬁ

design
500K 1M 15M 2M 25M 3M 3.5M 4M

—Works_ on entire design instead of Instances
few critical paths

Runtime

o o

* Numerical synthesis

—Advanced size-independent library
modeling enables numerical
formulation

—Optimal solution using state-of-
the-art numerical solvers

—Works for sequential and Numerical Formulation = f(library cell timing,
: . . library pin cap, path stages, endpoint loading,
combinational |OgIC startpoint cap, and so on)
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Numerical Delay Modeling Basics

* Theory of Logical Effort by Sutherland et al. 1999
- g - logical effort
- h : electrical effort d = g X h + D
- p : parasitic delay of gate

L
e Can be rewritten as: l_A_\ C

 Derivation of g and p for a library cell:
— Not perfectly linear
— Different delays for rise and fall times
— Variance between different timing arcs
— Slope variance for different input transitions

« Library analysis requires clustering and handling outliers for g and p
derivation
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Receive a set discretized delay models, wherein each
discretized delay model corresponds to a timing arc of a cell
of the cell type, and wherein each discretized delay model is

capable of being represented by a set of points in a multi-
dimensional space, the multi-dimensional space including an
output loading dimension, an input transition dimensicn, an
output delay dimension, and an output transition dimension
402

t

Determine a set of specific numerical delay models based on
the set of discretized delay models
404

¥

Determine the generic numerical delay model for the cell type
nased on at least a subset of specific numercal delay mode's
406
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Summary and Future Work
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Summary and Future Work

 Designing fast synthesis with good QoR and must-have optimizations
for today’s large designs is complex

* Tight correlation with final synthesis is a must

 Fast runtime in synthesis continues to be a
major objective

» Modeling additional physical effects in smaller
geometries to maintain correlation with increased design complexities

* New technologies are developed to speed up synthesis without QoR
degradation, such as area, timing, and power
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